Na prática, a média móvel proporcionará uma boa estimativa da média das séries temporais se a média for constante ou se mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo significará os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série temporal usada para ilustração juntamente com a demanda média da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ela aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então, torna-se constante novamente. Os dados são simulados adicionando à média, um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que em qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas em conjunto com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas médias móveis para a direita por períodos. Uma conclusão é imediatamente aparente da figura. Para as três estimativas, a média móvel está atrasada por trás da tendência linear, com o atraso crescente com m. O atraso é a distância entre o modelo e a estimativa na dimensão temporal. Por causa do atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um momento específico no valor médio do modelo e o valor médio previsto pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e tendência do estimador da média são dados nas equações abaixo. As curvas de exemplo não combinam essas equações porque o modelo de exemplo não está aumentando continuamente, antes ele começa como uma constante, muda para uma tendência e depois se torna constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada pela mudança das curvas para a direita. O atraso e o desvio aumentam proporcionalmente. As equações abaixo indicam o atraso e a polarização de um período de previsão para o futuro em relação aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel é baseado na suposição de uma média constante, e o exemplo tem uma tendência linear na média durante uma parcela do período de estudo. Uma vez que as séries em tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para esses resultados. Também podemos concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menores. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média. O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero e a variância do erro é composta por um termo que é uma função e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de observações m, assumindo que os dados provêm de uma população com um meio constante. Este termo é minimizado fazendo m o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar as previsões sensíveis às mudanças, queremos m o mais pequeno possível (1), mas isso aumenta a variação do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo suplemento para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Comparadas com a tabela acima, os índices do período são deslocados em -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usadas para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro médio móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto feito a partir da média móvel no tempo 0 é 11,1. O erro então é -5.1. O desvio padrão e o desvio médio médio (MAD) são calculados nas células E6 e E7, respectivamente. Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 2: Estatísticas, Probabilidade e Ruído Os sinais de distribuição normais formados por processos aleatórios geralmente têm um pdf em forma de sino. Isso é chamado de distribuição normal, distribuição de Gauss, ou Gaussiano, após o grande matemático alemão Karl Friedrich Gauss (1777-1855). A razão pela qual essa curva ocorre tão freqüentemente na natureza será discutida em breve em conjunto com a geração de ruído digital. A forma básica da curva é gerada a partir de um expoente quadrado negativo: esta curva bruta pode ser convertida no gaussiano completo, adicionando uma média ajustável. E desvio padrão, sigma. Além disso, a equação deve ser normalizada para que a área total sob a curva seja igual a uma, uma exigência de todas as funções de distribuição de probabilidade. Isso resulta na forma geral da distribuição normal, uma das relações mais importantes em estatística e probabilidade: a Figura 2-8 mostra vários exemplos de curvas gaussianas com vários meios e desvios padrão. A média centra a curva sobre um valor particular, enquanto o desvio padrão controla a largura da forma do sino. Uma característica interessante do gaussiano é que as caudas caem para zero muito rapidamente, muito mais rápido do que com outras funções comuns, como a decomposição exponencial ou 1x. Por exemplo, em dois, quatro e seis desvios padrão da média, o valor da curva gaussiana caiu para cerca de 119, 17563 e 1166,666,666, respectivamente. É por isso que os sinais normalmente distribuídos, como ilustrado na Fig. 2-6c, parece ter um valor aproximado de pico a pico. Em princípio, os sinais desse tipo podem experimentar excursões de amplitude ilimitada. Na prática, a queda acentuada do pdf gaussiano determina que esses extremos quase nunca ocorrem. Isso resulta na forma de onda com um aspecto relativamente limitado, com uma amplitude aparente de pico de pico de cerca de 6-8sigma. Conforme demonstrado anteriormente, a integral do pdf é usada para encontrar a probabilidade de um sinal estar dentro de um certo intervalo de valores. Isso torna a integral do pdf suficientemente importante para que seja dado seu próprio nome, a função de distribuição cumulativa (cdf). Um problema especialmente obnóxio com o gaussiano é que ele não pode ser integrado usando métodos elementares. Para contornar isso, a integral do Gauss pode ser calculada por integração numérica. Isso envolve a amostragem da curva gaussiana contínua muito finamente, digamos, alguns milhões de pontos entre -10sigma e 10sigma. As amostras neste sinal discreto são então adicionadas para simular a integração. A curva discreta resultante dessa integração simulada é então armazenada em uma tabela para uso no cálculo de probabilidades. O cdf da distribuição normal é mostrado na Fig. 2-9, com seus valores numéricos listados na Tabela 2-5. Uma vez que esta curva é utilizada com tanta frequência em probabilidade, é dado o seu próprio símbolo: Phi (x) (phi grego das maiúsculas). Por exemplo, Phi (-2) tem um valor de 0,0228. Isso indica que existe uma probabilidade de 2,28 de que o valor do sinal será entre - infin e dois desvios padrão abaixo da média, em qualquer momento escolhido aleatoriamente. Do mesmo modo, o valor: Phi (1) 0.8413 significa que existe 84.13 chances de que o valor do sinal, em um instante selecionado aleatoriamente, seja entre - infin e um desvio padrão acima da média. Para calcular a probabilidade de que o sinal seja entre dois valores, é necessário subtrair os números apropriados encontrados na tabela Phi (x). Por exemplo, a probabilidade de que o valor do sinal, em algum momento escolhido aleatoriamente, seja entre dois desvios padrão abaixo da média e um desvio padrão acima da média, é dado por: Phi (1) - Phi (-2) 0.8185 Ou 81.85 Usando este método, as amostras retiradas de um sinal normalmente distribuído serão dentro de 1sigma da média aproximadamente 68 do tempo. Eles estarão dentro de 2sigma cerca de 95 do tempo, e dentro de 3sigma cerca de 99.75 do tempo. A probabilidade de o sinal ser mais de 10 desvios padrão da média é tão minúscula, seria esperado que ocorresse por apenas alguns microsegundos desde o início do universo, cerca de 10 bilhões de anos. A Equação 2-8 também pode ser usada para expressar A função de massa de probabilidade de sinais discretos normalmente distribuídos. Neste caso, x é restrito a um dos níveis quantizados que o sinal pode assumir, como um dos valores binários 4096 que saiam de um conversor analógico-digital de 12 bits. Ignore o termo Sigma de 1 radio 2pi, é usado apenas para tornar a área total debaixo da curva de pdf igual a uma. Em vez disso, você deve incluir qualquer termo necessário para tornar a soma de todos os valores na pmf igual a uma. Na maioria dos casos, isso é feito gerando a curva sem se preocupar com a normalização, somando todos os valores não normalizados e dividindo todos os valores pela soma.2.1 Modelos médios em movimento (modelos MA) Os modelos de séries temporais conhecidos como modelos ARIMA podem Incluem termos autorregressivos e os termos médios móveis. Na semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor remanescente de x t. Por exemplo, um termo autorregressivo de lag 1 é x t-1 (multiplicado por um coeficiente). Esta lição define os termos médios móveis. Um termo médio móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Deixe (wt overset N (0, sigma2w)), o que significa que o w t é idêntico, distribuído independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) O modelo de média móvel da ordem q , Denotado por MA (q) é (xt mu wt theta1w theta2w dots thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele flip os signos algébricos de valores de coeficientes estimados e termos (desactuados) em fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se os sinais negativos ou positivos foram usados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série de tempo com um modelo MA (1) Observe que o único valor diferente de zero na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma amostra ACF com autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para estudantes interessados, as provas dessas propriedades são um apêndice para este folheto. Exemplo 1 Suponha que um modelo de MA (1) seja x t 10 w t .7 w t-1. Onde (com o excesso de N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por um gráfico deste ACF segue. O enredo que acabamos de mostrar é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra geralmente não fornece um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito dessa trama. A amostra ACF para os dados simulados segue. Vemos um pico no intervalo 1 seguido de valores geralmente não significativos para atrasos após 1. Observe que o ACF de amostra não corresponde ao padrão teórico da MA subjacente (1), que é que todas as autocorrelações por atrasos após 1 serão 0 . Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria os mesmos recursos amplos. Propriedades terapêuticas de uma série de tempo com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Observe que os únicos valores não nulos no ACF teórico são para atrasos 1 e 2. As autocorrelações para atrasos superiores são 0 . Assim, uma amostra de ACF com autocorrelações significativas nos intervalos 1 e 2, mas as autocorrelações não significativas para atrasos maiores indicam um possível modelo de MA (2). Iid N (0,1). Os coeficientes são de 1 0,5 e 2 0,3. Uma vez que este é um MA (2), o ACF teórico terá valores diferentes de zero apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não-zero são A Um gráfico do ACF teórico segue. Como quase sempre é o caso, os dados da amostra não se comportam tão perfeitamente quanto a teoria. Nós simulamos n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). A série de séries temporais dos dados segue. Tal como acontece com a série de séries temporais para os dados da amostra MA (1), você não pode contar muito com isso. A amostra ACF para os dados simulados segue. O padrão é típico para situações em que um modelo de MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2 seguidos de valores não significativos para outros atrasos. Observe que, devido ao erro de amostragem, a amostra ACF não corresponde exatamente ao padrão teórico. ACF para General MA (q) Modelos Uma propriedade de modelos de MA (q) em geral é que existem autocorrelações diferentes de zero para os primeiros intervalos de q e autocorrelações 0 para todos os atrasos gt q. Não singularidade de conexão entre valores de 1 e (rho1) em MA (1) Modelo. No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E depois use 1 (0,5) 2 para 1. Você obterá (rho1) 0.4 em ambos os casos. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos de MA (1) para ter valores com valor absoluto inferior a 1. No exemplo que acabamos de dar, 1 0.5 será um valor de parâmetro permitido, enquanto que 1 10.5 2 não irá. Invertibilidade de modelos de MA Um modelo de MA é considerado inversível se for algébricamente equivalente a um modelo de AR de ordem infinita convergente. Ao convergir, queremos dizer que os coeficientes de AR diminuem para 0, enquanto nos movemos para trás no tempo. Invertibilidade é uma restrição programada em software de série temporal usado para estimar os coeficientes de modelos com termos MA. Não é algo que buscamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são apresentadas no apêndice. Nota de teoria avançada. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo inversível. A condição necessária para a invertibilidade é que os coeficientes possuem valores tais que a equação 1- 1 y-. - q e q 0 possui soluções para y que se encontram fora do círculo da unidade. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10 w t. 7w t-1. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 lags de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Lag, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Nomeado acfma1 (nossa escolha de nome). O comando de parcela (o comando 3) representa atrasos em relação aos valores ACF para os atrasos 1 a 10. O parâmetro ylab rotula o eixo y e o parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF, use simplesmente o comando acfma1. A simulação e os gráficos foram feitos com os seguintes comandos. Xcarima. sim (n150, list (mac (0.7))) Simula n 150 valores de MA (1) xxc10 acrescenta 10 para fazer a média 10. Padrões de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostra simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt .5 w t-1 .3 w t-2. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) com theta1 0,5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, principal Simulated MA (2) Series) acf (x, xlimc (1,10), MainACF para dados simulados de MA (2) Apêndice: Prova de propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Variance: (texto (texto) (mu wt theta1 w) Texto de 0 texto (wt) (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 . A razão é que, por definição de independência do peso. E (w k w j) 0 para qualquer k j. Além disso, porque o w t tem 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo de MA reversível é aquele que pode ser escrito como um modelo de AR de ordem infinita que converge para que os coeficientes de AR convergem para 0 à medida que nos movemos infinitamente de volta no tempo. Bem, demonstre invertibilidade para o modelo MA (1). Em seguida, substituímos a relação (2) para w t-1 na equação (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) No momento t-2. A equação (2) torna-se então substituímos a relação (4) para w t-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Se continuássemos ( Infinitamente), obteríamos o modelo de AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Note, no entanto, que se 1 1, os coeficientes que multiplicam os atrasos de z aumentarão (infinitamente) de tamanho à medida que avançamos Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo de MA reversível (1). Modelo de ordem infinita MA Na semana 3, veja que um modelo de AR (1) pode ser convertido em um modelo de MA de ordem infinita: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w) Este somatório de termos de ruído branco passados é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos que retornam no tempo. Isso é chamado de uma ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Recorde na Semana 1, observamos que um requisito para um AR estacionário (1) é aquele 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Este último passo usa um fato básico sobre séries geométricas que requerem (phi1lt1) caso contrário a série diverge. Navegação
No comments:
Post a Comment